

CMSACOR04T-COMPUTER SCIENCE (CC4)

DISCRETE STRUCTURES

Time Allotted: 2 Hours

Full Marks: 50

 $2 \times 5 = 10$

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

Answer Question No. 1 and any *five* from the rest

- 1. Answer any *five* questions from the following:
 - (a) What do you mean by uncountably infinite set? Give an example.
 - (b) A set S has n elements. Prove by mathematical induction that it has 2^n sub-sets.
 - (c) What do you mean by a reflexive relation? Give an example.
 - (d) If *P* and *Q* are two propositions, prove that $(((P \lor Q) \multimap P) \text{ is a tautology.}$
 - (e) Find out the number of distinguishable arrangements of the word GOOGLE so that two O's are always together.
 - (f) Show that number of odd degree vertices in a graph is always even.
 - (g) Define a complete graph.
 - (h) Prove that the maximum number of edges possible in a simple graph with *n* vertices is $\frac{n(n-1)}{2}$.
 - (i) What is chromatic number of a graph?
 - (j) Derive the Big-Oh notation of the function $f(x) = x^2 + x \log x + 100$.

2.	(a)	A string like 12321, which reads the same forward and backward, is called a palindrome. How many palindromes can be made using characters from {0, 1, 2, 3,, 9} using (i) five digits, (ii) six digits?	4
	(b)	Suppose a programming language allows its variable-names to be maximum six- character long. Characters can be from the set { $A - Z$, $a - z$, $0 - 9$, _}. The first character must be an alphabet or '_'. How many distinct names are there?	4
3.	(a)	What is meant by time complexity of an algorithm? Formulate the recurrence relation to find out the time complexity of Binary search.	4

(b) Solve the recurrence relation formulated by you using the method of substitution.

4

CBCS/B.Sc./Hons./2nd Sem./CMSACOR04T/2020

- 4. (a) Define generating function of a sequence $\{a_n\}$. Find out the Generating Function for the infinite sequence $\{a_n = (n+1), \text{ for } n \ge 0\}$.
 - (b) Solve the *linear recurrence relation*, subject to the initial conditions $x_0 = 0$, $x_1 = 1$:

3

5

3

5

3 5

4

3

5

$$x_{n+2} + 2x_{n-1} - 15x_n = 0$$
, $n \ge 2$

- 5. (a) State the Principle of Inclusion and Exclusion (PIE) for four sets A, B, C, D.
 - (b) Find out the number of primes between 1 and 100 using PIE.
- 6. (a) Distinguish between a graph and a multi-graph.
 - (b) Compare between the adjacency matrix and the adjacency list representation of a graph. Illustrate with the following graph with vertex-set and edge-set {a, b, c, d} and {1, 2, 3, 4} respectively.

- 7. (a) What is a minimally connected graph? Prove that a minimally connected graph is 4 a tree.
 - (b) What is a spanning tree? Find out two distinct spanning trees of the following graph.

- 8. (a) Compare between an Eulerian graph and a Hamiltonian graph.
 - (b) Draw graphs which are
 - (i) Both Eulerian and Hamiltonian
 - (ii) Eulerian but not Hamiltonian
 - (iii) Hamiltonian but not Eulerian.
 - **N.B.**: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

